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Some h-p finite element computations have been carried out to obtain solutions for
fully developed laminar flows in curved pipes with curvature ratios from 0.001 to
0.5. An Oldroyd-3-constant model is used to represent the viscoelastic fluid, which
includes the upper-convected Maxwell (UCM) model and the Oldroyd-B model as
special cases. With this model we can examine separately the effects of the fluid
inertia, and the first and second normal-stress differences. From analysis of the global
torque and force balances, three criteria are proposed for this problem to estimate
the errors in the computations. Moreover, the finite element solutions are accurately
confirmed by the perturbation solutions of Robertson & Muller (1996) in the cases
of small Reynolds/Deborah numbers.

Our numerical solutions and an order-of-magnitude analysis of the governing
equations elucidate the mechanism of the secondary flow in the absence of second
normal-stress difference. For Newtonian flow, the pressure gradient near the wall
region is the driving force for the secondary flow; for creeping viscoelastic flow, the
combination of large axial normal stress with streamline curvature, the so-called hoop
stress near the wall, promotes a secondary flow in the same direction as the inertial
secondary flow, despite the adverse pressure gradient there; in the case of inertial
viscoelastic flow, both the larger axial normal stress and the smaller inertia near the
wall promote the secondary flow.

For both Newtonian and viscoelastic fluids the secondary volumetric fluxes per
unit of work consumption and per unit of axial volumetric flux first increase then
decrease as the Reynolds/Deborah number increases; this behaviour should be of
interest in engineering applications.

Typical negative values of second normal-stress difference can drastically suppress
the secondary flow and in the case of small curvature ratios, make the flow ap-
proximate the corresponding Poiseuille flow in a straight pipe. The viscoelasticity of
Oldroyd-B fluid causes drag enhancement compared to Newtonian flow. Adding a
typical negative second normal-stress difference produces large drag reductions for
a small curvature ratio δ = 0.01; however, for a large curvature ratio δ = 0.2, al-
though the secondary flows are also drastically attenuated by the second normal-stress
difference, the flow resistance remains considerably higher than in Newtonian flow.

It was observed that for the UCM and Oldroyd-B models, the limiting Deborah
numbers met in our steady solution calculations obey the same scaling criterion as
proposed by McKinley et al. (1996) for elastic instabilities; we present an intriguing
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problem on the relation between the Newton iteration for steady solutions and the
linear stability analyses.

1. Introduction
The motion of fluids through curved pipes driven by a pressure drop is a fundamen-

tal and much-studied problem. The practical importance of such flows in engineering
(hydraulic pipe systems, heat exchange devices, etc.) and in biomechanics (e.g. blood
flow) is evident, as comprehensively reviewed by Berger, Talbot & Yao (1983). Due
to fluid inertia, secondary flow appears whenever fluid flows in curved pipes. In the
limiting case of small curvature ratio, δ = a/R, where a, R are the radii of the tube
and the coil respectively (see figure 1), and ignoring all terms arising due to the
coil curvature except centripetal acceleration terms, the governing equations can be
reduced and solved in a stream-function/vorticity form (Dean 1927, 1928). Thus a
single parameter, the Dean number, which is a Reynolds number modified by the
curvature ratio, determines the flow resistance (the drag) and the character of the sec-
ondary flow. Roughly speaking, these perturbation solutions are valid when δ < 0.01.
An exception is the perturbation solution of Topakoglu (1967) which does not invoke
Dean’s approximation but is limited to small Reynolds numbers. Austin & Seader
(1973) obtained finite difference solutions with curvature ratio as large as 0.2; Nunge
& Lin (1973) investigated the large curvature ratio effect by using a Fourier series
method for small Dean numbers and the boundary layer approximation of Ito (1969)
for large Dean numbers, but they were somewhat frustrated in attempting to join
these two solutions smoothly; Nandakumar & Masliyah (1982) presented some finite
difference solutions for δ = 0.1; Soh & Berger (1987) solved the full Navier–Stokes
equation from δ = 0.01 to δ = 0.2 using a finite difference method; they found that
the δ-dependence of the flow resistance increases as the Dean number increases.

In practical applications, a large curvature ratio is often desirable, for instance to
increase the heat or mass exchange. The present investigation was partly motivated
by the work of Jones, Thomas & Aref (1989) on chaotic mixing in a twisted pipe
consisting of piecewise curved tubes. Using standard dynamical system diagnostics
and Dean’s perturbation solution they demonstrated that through an appropriate
arrangement of the pitch angles, the steady, laminar flow in the twisted pipe can
produce chaotic particle advection that enhances the mixing quality considerably.
To study advective mixing, accurate velocity fields are necessary, especially for the
chaotic mixing process in which the fluid elements are stretched exponentially with
time; as a consequence, errors in the numerical velocity field will be convected with
fluid particles, accumulated along particle trajectories, and later grow exponentially
with time (Souvaliotis, Jana & Ottino 1995). In this study one of our intentions is
to obtain accurate numerical solutions for fully developed, incompressible, laminar
flows in curved pipes with arbitrary curvature ratios. Earlier numerical simulations
on curved pipe flow are based on checking solutions with the perturbation solutions
and, in the high Dean number region, comparison with the previously published data.
To make the error estimation more solidly grounded, we propose three criteria based
on the global torque- and momentum-balance requirements; as these criteria check
not only the velocity field but also the velocity gradient and the extra stress fields,
they can be used by subsequent investigators.

It is rather surprising to find that, despite its important applications, the flow of
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viscoelastic fluids in curved pipes has received much less attention in the literature
than its Newtonian counterpart. Jones & Davies (1976) investigated dilute aqueous
solutions of macromolecules in curved tubes, and their experiments showed that
minute amounts of solute could produce significant delayed departure of the flow
rate from Poiseuille flow, a phenomenon named drag reduction in the laminar region.
In Mashelkar & Devarajan (1976), the shear-thinning effect on the frictional loss was
carefully measured and formulated using the boundary-layer approximation; their
study showed that the departure from the Poiseuille flow rate occurs at practically the
same value of Reynolds number for Newtonian and purely viscous non-Newtonian
fluids, whereas such a departure occurs at progressively higher Reynolds numbers for
viscoelastic fluids as the polymer concentration increases. Some researchers simply
attributed the laminar drag reduction to attenuation of the secondary flow, though
there was no experimental evidence. For example, Tsang & James (1980) tried to
explain the drag reduction by estimating the cross-sectional stresses based on Dean’s
solution and several molecular models but ignored the axial normal stress. By con-
sidering a viscoelastic constitutive equation similar to the Oldroyd-B model, Thomas
& Walters (1963) obtained a perturbation expression for the flow rate in the regime
of small curvature ratios. This work was later extended by Bowen, Davies & Walters
(1991) to a perturbation solution for the creeping flow of an upper-convected Maxwell
(UCM) fluid without invoking Dean’s approximation. More recently, Robertson &
Muller (1996) presented a perturbation solution for Oldroyd-B fluid with inertia,
which contains UCM fluid as a limiting case. Although these perturbation solutions
are limited by small inertial or elastic levels, they are valuable for checking numerical
solutions. These perturbation solutions indicate that fluid viscoelasticity promotes a
secondary flow in the same direction as the inertial secondary flow and, as the elastic
level increases, there is a short period of drag reduction (extremely small) followed
by drag enhancement.

The mechanism of the laminar drag reduction and secondary flow caused by
viscoelasticity is still not well understood, especially with the parameters outside the
perturbation window. One of our primary goals is to characterize the viscoelastic
effects on the flow resistance and the secondary flow in curved pipes within a large
range of the curvature ratio. To reduce the complexity of the problem, we shall
concentrate on a constant-viscosity Oldroyd-3-constant model proposed by Phan-
Thien & Huilgol (1985), which includes the UCM model, and the Oldroyd-B model
as special cases. With this model, we can examine the effects of the fluid inertia, the first
and second normal-stress differences and their interactions, without the complexities
caused by shear-thinning viscosity. We hope the study will shed light on the mechanism
of the secondary flow caused by viscoelasticity and reveal the complex dependence of
the flow resistance on the secondary flow, as well as on the curvature ratio.

For curvilinear flows, another important research realm is to predict the flow
transitions and instabilities. For Newtonian fluids, the onset and development of
bifurcation of the secondary flows at high Dean numbers in a curved pipe with small
curvature ratio was discovered and studied numerically by Daskopoulos & Lenhoff
(1989), Dennis & Ng (1982), Dennis & Riley (1991) and Yanase, Goto & Yamamoto
(1989). The destabilizing effects of viscoelasticity on the steady flow of polymer
melts and solutions were well documented, and over the past ten years, significant
experimental and theoretical progress has been made in elucidating the mechanisms
of the particular class of fluid dynamic instabilities termed ‘purely elastic’, i.e. the
instabilities in the absence of inertia. A comprehensive review of the literature has
been provided by Shaqfeh (1996). A central conclusion from the recent work is that
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the destabilizing mechanism leading to purely elastic instabilities is the combination
of streamline curvature and large elastic normal stresses which give rise to a tension
along the fluid streamlines, the so-called hoop stresses. McKinley, Pakdel & Oztekin
(1996) proposed a dimensionless criterion that can be used to characterize and unify
the critical condition required for onset of purely elastic instabilities in a wide range
of different flow geometries; the scaling incorporates both the elastic (first) normal-
stress difference in the flow direction and the magnitude of the streamline curvature.
The criterion, however, does not apply to the cases where the second normal stress
difference is non-zero, which proves to have large influence on the flow stability. Beris,
Avgousti & Souvaliotis (1992) indicated that the major effect of the negative second
normal stress difference is to suppress viscoelastic instabilities.

Graham (1998) studied the effect of superimposing axial flows on Taylor–Couette
flows of UCM and Oldroyd-B fluids; his analysis predicts that the addition of a
relatively weak axial flow can significantly enhance the stability of the azimuthal
Couette flow. The stabilization is due to the axial (tensile) stress introduced by the
axial flow, which resists (or overshadows) the destabilizing hoop stress. Note that the
situation here is to create a negative second normal stress difference for the azimuthal
Couette flow by the positive first normal stress difference of an axial shear flow. For
viscoelastic flows in curved pipes, as far as we are aware, owing to the lack of analytic
base-flow solutions, no one has pursued in depth the instability problem. In the present
study we only seek laminar, steady solutions in curved pipes, which may provide the
base solutions for possible future elastic instability investigations. Furthermore, we
shall find some subtle relations between our steady solution computation and flow
stability analyses. For example, the hoop stress in the main flow destabilizes the flow
by initially producing a secondary flow which will give rise to a tensile stress in the
neutral direction; this tensile stress, however, tends to stabilize the main flow, i.e. to
weaken the secondary flow.

We use the h-p finite element method which is well known for its flexible local
enrichment of the interpolation order and the exponential convergency towards the
accurate solution for smooth problems. The Navier–Stokes equation is solved in the
velocity/pressure formulation and the solutions can be checked by the published data.
For the viscoelastic flow, six additional stress components are solved for with the con-
stitutive equations, in which some special techniques developed for viscoelastic flows
are employed. The finite element solutions are validated through comparing with the
perturbation solutions of Robertson & Muller (1996) and further confirmed by the
three criteria mentioned earlier. More accurate solutions can be obtained through
increasing the interpolation orders (the h-p extension). In sequence, we shall study
Newtonian flow, the creeping flow of UCM fluid and the inertial flow of Oldroyd-B
fluid. The impact of the non-zero second normal stress on the flow resistance and sec-
ondary flow is examined, in which the relation of the drag reduction/enhancement to
the attenuation of the secondary flow is discussed for large and small curvature ratios.

2. Basic equations and perturbation solutions
The momentum and continuity equations for incompressible, steady flows are

ρ(u∗ · ∇)u∗ = −∇P ∗ + ∇ · τ ∗, (2.1)

∇ · u∗ = 0, (2.2)
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where u∗ is the velocity, ρ the density, and P ∗, τ ∗ are the pressure and the extra stress,
respectively. The constitutive equation for viscoelastic fluids considered in this study
is the Oldroyd-3-constant model proposed by Phan-Thien & Huilgol (1985) in which
the extra stress consists of two parts: τ ∗s from the Newtonian solvent, and S∗ from
the polymer solute:

τ ∗ = τ ∗s + S∗, (2.3)

τ ∗s = η∗s (∇u∗ + (∇u∗)T ), (2.4)

S∗ + λS∗(1) = η∗p(D
∗ − µλ(D∗ · D∗) + 1

2
µλ(D∗ : D∗)I ), (2.5)

where D∗ is the strain rate tensor ∇u∗ + (∇u∗)T , I the unit tensor, λ the fluid
relaxation time, µ a dimensionless parameter, and η∗s , η∗p the viscosity contributions
from the solvent and polymers, respectively. The subscript (1) stands here for the
upper-convected derivative defined by

S∗(1) = (u∗ · ∇)S∗−S∗ · ∇u∗ − (∇u∗)T · S∗. (2.6)

We scale the velocity with the mean velocity, U0
m, in a straight pipe with the same

radius and under the same pressure gradient as the curved pipe, the characteristic
length is the pipe radius, a, and the extra stress and pressure are scaled with η∗U0

m/a
where η∗ = η∗s + η∗p . The non-dimensional forms of the governing equations thus
become

Rn(u · ∇)u = −∇P + ∇ · (τ s + S), (2.7)

∇ · u = 0, (2.8)

τ s = ηs(∇u+ (∇u)T ), (2.9)

S+DeS(1) = ηp(D−µDe(D · D)+ 1
2
µDe(D : D)I ), (2.10)

with the Reynolds number and Deborah number defined, respectively, by

Rn =
ρU0

ma

η∗
(2.11)

and

De =
λU0

m

a
. (2.12)

This constitutive model predicts constant shear viscosity, and constant first and
second normal-stress difference coefficients. Note that, if µ = 0 the model reduces to
Oldroyd-B fluid, if ηp = 1 it further reduces to UCM fluid, and De = 0 or ηp = 0
corresponds to the Newtonian case.

There are several definitions of the Dean number employed in the literature. A
natural choice is based on the mean axial velocity, Um, in the curved pipe, but it
depends on the velocity field to be solved. Later theoretical and numerical investigators
preferred to use the following Dean number:

Dn = 8

(
2a

R

)1/2

Rn. (2.13)

Perturbation solutions provide valuable tests for numerical simulations; on the other
hand, numerical simulations can examine the range of applicability of perturbation
solutions. In the literature, there are numerous perturbation solutions for Newtonian
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Figure 1. Sketch of the toroidal coordinate system.

laminar flow in curved pipes with small curvature ratio, δ = a/R. Topakoglu (1967)
obtained a perturbation solution for small Reynolds numbers without invoking
the approximation of 1/(R + r cos θ) being replaced by 1/R in the Navier–Stokes
equations. Bowen et al. (1991) presented an analytic perturbation solution for the
creeping flow of UCM fluid in curved pipes. Robertson & Muller (1996) derived
a perturbation solution for Oldroyd-B fluid that includes UCM fluid as a special
case and contains the inertial effect. There is little difference between Topakoglu’s
and Robertson & Muller’s predictions for Newtonian flows, and Bowen et al.’s and
Robertson & Muller’s predictions are almost identical for creeping UCM flow. Let
us denote the volume flux in a curved pipe Jc, and that in a straight pipe of the same
radius and under the same pressure gradient by Js, then to the second order in δ,
in terms of our definitions of the Reynolds and Deborah numbers, the solution of
Robertson & Muller (1996) is(

Jc

Js

)
R

= 1 +
δ2

48

{
1− 4R2

n

(
11

360
+ 4R2

n

1541

87 091 200

)
+4D2

e

(
η2
p

) 8

3

(
1− 4

15
D2
eηp
(
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+4DeRnηp

1

26 880

(
4R2

n + 5376
)

−16D2
eR

2
nηp

1

60 480

(
792− 691ηp

)− 16D3
eRnη

2
p

1

90

(
15− 11ηp

)}
. (2.14)

They also gave analytic solutions for the stream function of the secondary flow, to
which we compare our numerical solutions. The expression for the stream function
up to O(δ2) is very lengthy, and the reader is referred to the original paper. The flow
resistance (the friction factor or the drag) is generally expressed in terms of the ratio
of the pressure gradient in a curved pipe, fc, to the pressure gradient in a straight
pipe, fs, carrying the same volume flux, thus

fc

fs
=

(
Jc

Js

)−1

. (2.15)
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3. Three criteria of momentum and torque balances
Let us consider the flow in a curved pipe in terms of the toroidal coordinate system

illustrated by figure 1. Since the flow is fully developed,

∂

∂ψ
= 0 for all the variables except

∂P

∂ψ
= C, (3.1)

where C is a given constant. We can split the pressure as P = p(r, θ) + f(ψ) and,
without loss of generality, further simplify it as

P = p(r, θ) + Cψ, (3.2)

thus the total stress Σ can be expressed by

Σ = σ − CψI = τ (r, θ)− p(r, θ)I − CψI , (3.3)

where I is the unit tensor. The following analyses are carried out for the control
volume that consists of the pipe wall and two cross-sections, ψ = 0 and ψ = π,
named S1 and S2, respectively.

3.1. Torque balance

The torque with respect to the curvature centre of the pipe exerted by the pipe wall
on the fluid is

T1 =

∫ π

ψ=0

∫ 2π

θ=0

σrψ(R + a cos θ)2adθdψ = π

∫ 2π

θ=0

σrψ(R + a cos θ)2adθ. (3.4)

The torque produced by the stresses on the two cross-sections S1 and S2 cancel each
other except for the pressure Cψ which is

T2 =

∫ a

r=0

∫ 2π

θ=0

πC (R + r cos θ) rdθdr = π2a2RC. (3.5)

The torque-balance principle requires T1 = T2, that is∫ 2π

θ=0

σrψ(R + a cos θ)2adθ = πa2RC. (3.6)

In general, the difference in the torques enables us to define an error index, Et, to
assess the numerical solutions,

ERt = (T1 − T2)/T2. (3.7)

3.2. Momentum balance in the x-direction

The force exerted by the wall stresses that have a contribution in the x-direction is

Fx1 = −
∫ π

ψ=0

∫ 2π

θ=0

σrψ sinψ (R + a cos θ) adθdψ = −2

∫ 2π

θ=0

σrψ(R + a cos θ)adθ. (3.8)

The force produced by the wall pressure is

Fx2 =

∫ π

ψ=0

∫ 2π

θ=0

[−p(r, θ)− Cψ] cos θ cosψ (R + a cos θ) adθdψ = 2πa2C. (3.9)

The force on the two cross-sections S1 and S2 is

Fx3 = −2

∫ a

r=0

∫ 2π

θ=0

(
σrψ cos θ − σθψ sin θ

)
rdθdr. (3.10)
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The change of the momentum flux in the x-direction is

Qx = 2

∫ a

r=0

∫ 2π

θ=0

ρuxuψrdθdr. (3.11)

Thus the momentum-balance principle requires

Fx1 + Fx2 + Fx3 + Qx = 0, (3.12)

and therefore a measure of the numerical error may be defined as

ERx = (Fx1 + Fx2 + Fx3 + Qx) / (Fx2 + Fx3 + Qx) . (3.13)

3.3. Momentum balance in the y-direction

The force exerted by the wall stresses that have a contribution in the y-direction is

Fy1 =

∫ π

ψ=0

∫ 2π

θ=0

(σrr cos θ − σrθ sin θ) sinψ(R + a cos θ)adθdψ

= 2

∫ 2π

θ=0

(σrr cos θ − σrθ sin θ) (R + a cos θ) adθ. (3.14)

The wall pressure Cψ is balanced by the pressure on the cross-sections S1 and S2:∫ π

ψ=0

∫ 2π

θ=0

Cψ cos θ sinψ(R + a cos θ)adθdψ = πa2Cπ. (3.15)

On the cross-sections S1 and S2 the fluid stress produces

Fy2 = −2

∫ a

r=0

∫ 2π

θ=0

σψψrdθdr. (3.16)

The change of the momentum flux in the y-direction is

Qy = 2

∫ a

r=0

∫ 2π

θ=0

ρu2
ψrdθdr. (3.17)

The momentum-balance in the y-direction requires

Fy1 + Fy2 + Qy = 0, (3.18)

thus a measure of the numerical solutions may be defined as

ERy =
(
Fy1 + Fy2 + Qy

)
/
(
Fy2 + Qy

)
. (3.19)

4. Numerical methods
The dimensionless solution of Poiseuille flow in a straight circular pipe is

us = −1

4

dP

ds

(
1− r2

)
, (4.1)

where s is the axial distance, r the radial position. Note that this solution holds for
both Newtonian and Oldroyd-3-constant fluids. Hence the mean velocity is

U0
m = −1

8

dP

ds
. (4.2)
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Figure 2. The finite element mesh used in the present computations.

Since U0
m is the scaling velocity, it follows from equation (3.2) that

1

R

∂P

∂ψ
=
C

R
= −8. (4.3)

The fully developed flow assumption makes the problem two-dimensional; the
computational domain consists of cross-sections with varying thickness according to
the bending curvature. For the curved pipe geometry, the toroidal coordinate system
illustrated by figure 1 is commonly preferred because of its orthogonality and ability
to fit the pipe wall with a coordinate line. The transformation from the rectangular
coordinates (x, y, z) to the toroidal coordinate system (r, θ, ψ) is

x = (R + r cos θ) cosψ, y = (R + r cos θ) sinψ, z = r sin θ. (4.4)

The finite element mesh used in this study is shown in figure 2, where, due to a
limitation of the graphics tool used, each element is plotted as four sub-elements.
Because the flow is symmetric about the planes θ = 0 and θ = π, only a half-domain
in figure 2 is taken as the computational domain and the results obtained are plotted
on the whole domain according to the symmetry rule.

The numerical simulation of viscoelastic flows still remains a challenging task in
terms of accuracy, stability, convergence and demand for computer resources. We
use the h-p type finite element method to obtain high accuracy and efficiency. A set
of hierarchic basis functions proposed by Szabo & Babuska (1991) is adopted for
the finite element spaces. In our h-p extension, the velocity and stress variables are
interpolated with the same order of polynomials while the pressure is kept one order
lower than the velocity variables. Hence, given a finite element mesh, a discretization
is specified by its interpolation order of the velocity variables. In the following, we
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label a discretization by PO followed by its highest velocity interpolation order in the
computational domain, e.g. PO2, PO3, PO4, etc.

A common practice in the finite element computations for viscoelastic flows is
to use the Galerkin weighted residual method for the momentum and continuity
equations, and the streamline upwind Petrov–Galerkin (SUPG) technique of Brooks
& Hughes (1982) for the constitutive equation; the latter is due to the hyperbolic
character in the streamline direction with respect to the stress variables. In this
study the recently developed Galerkin/least-square method proposed by Hughes,
Franca & Hublert (1989) is employed to further stabilize the algorithm. It adds
some residual functions of the Euler–Lagrangian equations to the usual Galerkin
formulation to enhance its stability without damaging its accuracy. In the field of
viscoelastic flows, the Galerkin/least-square methods include the discrete elastic-
viscous-split-stress (DEVSS) method proposed by Guénette & Fortin (1995) and the
MIX1 method proposed by the present authors. Unlike DEVSS, the MIX1 method
need not solve for the strain-rate variable; it is thus considerably less costly but
has the same level of accuracy and stability as the DEVSS method; the readers are
referred to Fan, Tanner & Phan-Thien (1999) for the details.

Let Ω be the flow domain and ∂Ω its boundary. On ∂Ω, the partial boundaries
∂Ωu, ∂ΩN are identified with boundary conditions for the velocity u and the traction
force t, respectively. The variational formulation, named MIX1, used for the steady
flow of Oldroyd-3-constant fluids can be stated as follows:

Find the set (S , u, p) ∈ T×V×P such that, ∀Φu ∈ V, ∀Φp ∈ P, ∀Φs ∈ T,∫
Ω

Rn((u · ∇)u) ·ΦudΩ +

∫
Ω

(ηs(∇u+ ∇uT ) + S) : ∇Φu − P∇ ·Φu)dΩ

+

∫
Ω

αc(∇ · u)(∇ ·Φu)dΩ =

∫
∂ΩN

t ·Φud∂Ω, (4.5)

∫
Ω

(∇ · u)ΦpdΩ = 0, (4.6)∫
Ω

(S+DeS(1) − ηp(D−µDe(D · D)+ 1
2
µDe(D : D)I )) : (Φs + ku · ∇Φs)dΩ = 0, (4.7)

where D = ∇u + ∇uT , T, V, P denote the function spaces defined on Ω and
spanned by the basis functions Φs, Φu, Φp, for the extra stress, velocity and pressure,
respectively. In the toroidal coordinate system dΩ = (R + r cos θ)rdθdr.

In equation (4.5) the term containing αc is a least-square residual of the continuity
equation, and if αc is viewed as a kind of bulk viscosity – one may take αc = 1.
Our previous study (Fan et al. 1999) showed that constant αc has a satisfactory
performance for stabilization and is robust within a relatively large range of values.
In the present problem, the continuity equation contains only the velocity components
of the secondary flow and they are at least two orders of magnitude smaller than the
axial velocity component. To effect the stabilization, we tried some large values of
αc, say αc = 100, and found that not only does a large αc not harm the accuracy of
the momentum balance (the only possible side-effect), but it reduces errors of mass
conservation. Equation (4.7) is the SUPG formulation for the constitutive equation in
which we choose the parameter k = h/um, where h is the element size along the local
flow direction and um is a mean value of the velocity magnitude over the element.
This choice comes from the investigation of Fan & Crochet (1995); it guarantees that
the upwind term approaches zero together with the velocity on stationary walls.
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For the present problem, the no-slip condition of the velocity is applied on the
pipe wall; the normal velocity component uθ and the boundary traction t are set to
zero on the symmetric plane. No essential stress boundary condition is needed for the
viscoelastic flows.

After discretization, the nonlinear set of equations for the unknown variables
(u, p) or (S , u, p) is solved by the Newton iteration scheme. Convergence of the
iteration for the Newtonian flows is very easy to achieve because the secondary flow
is rather weak compared to the main axial flow; even at high Reynolds numbers
with large curvature ratios we did not need to invoke any stabilization technique.
The calculations for the viscoelastic flows are much more difficult; augmentation of
the elasticity level must be carried out carefully, in which the Deborah number De
was increased from zero (Newtonian flow) to a designated value. Generally, after
five iterations the maximum variation max{δS , δu, δp} is less than 10−4, indicating a
quadratic convergence behaviour.

An important measurement of the secondary flow is the stream function in the
cross-section. To satisfy the continuity equation (2.8), the stream function, F , in the
toroidal coordinate system can be defined as

ur = − 1

1 + δ cos θ

∂F

r∂θ
, uθ =

1

1 + δ cos θ

∂F

∂r
; (4.8)

then the corresponding Poisson equation

∇ · ∇F = (1 + r cos θ)

(
∂uθ

∂r
− ∂ur

r∂θ
+
uθ

r

)
+

2 (uθ cos θ + ur sin θ)

R
(4.9)

can be solved by using the ordinary finite element method. The boundary condition
is F = 0 on the pipe wall, as well as on the symmetry plane.

Let us define two maximum stream functions Fmax and F∗max as follows:

Fmax =
N

max
i=1
|Fi| , (4.10)

F∗max = Fmax

(
Js

Jc

)
, (4.11)

where Fi is the node value of the stream function from our finite element computation
and N is the total number of mesh nodes; Js and Jc are the axial volume flux through
the straight and curved pipes, respectively, under the same pressure gradient. Note
that in our computation, the pressure gradient is a fixed constant (equation (4.3))
and the boundary value of F is zero, hence Fmax physically represents the volumetric
flux of the secondary flow per unit work consumption and F∗max can represent the
volumetric flux of the secondary flow per unit axial flux. These two parameters are
used to quantify the intensity of the secondary flow in this study. Furthermore, we
define a relative root-mean-square (r.m.s) deviation of the stream function of our
computation from that of Robertson & Muller’s perturbation solution as

Frms =
1

Fmax

√√√√ 1

N

N∑
1

(Fi − FRobertson)2. (4.12)
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δ Rn Dn fc/fs ERt ERx ERy

0.5 12.0 96 1.0761 8.4×10−5 2.0×10−4 5.1×10−5

0.5 125.0 1000 1.6912 8.2×10−4 5.5×10−4 3.3×10−4

0.5 375.0 3000 2.2590 3.5×10−3 2.9×10−3 8.1×10−4

0.5 625.0 5000 2.5985 6.1×10−3 5.2×10−3 1.1×10−3

0.5 1250.0 10000 3.1497 1.2×10−2 1.1×10−2 1.7×10−3

0.5 2000.0 16000 3.6111 1.9×10−2 1.8×10−2 2.3×10−3

0.5 3000.0 24000 4.0697 2.9×10−2 2.8×10−2 2.9×10−3

Table 1. Finite element solutions using PO2 for the curvature ratio 0.5.

δ Rn PO fc/fs Fmax ERt ERx ERy

0.01 8838.83 PO2 2.8836 0.002934 1.8×10−2 1.8×10−2 2.2×10−3

0.01 8838.83 PO3 2.8858 0.002929 3.3×10−3 3.3×10−3 5.2×10−4

0.01 8838.83 PO4 2.8858 0.002929 6.3×10−4 6.3×10−4 3.8×10−5

0.01 8838.83 PO5 2.8858 0.002929 3.2×10−5 3.2×10−5 9.2×10−7

0.2 1976.42 PO2 3.0032 0.011717 1.5×10−2 1.4×10−2 1.9×10−3

0.2 1976.42 PO3 3.0052 0.011697 2.9×10−3 2.8×10−3 4.4×10−4

0.2 1976.42 PO4 3.0052 0.011697 4.5×10−4 4.2×10−4 3.4×10−5

0.2 1976.42 PO5 3.0052 0.011697 2.1×10−5 2.2×10−5 3.2×10−7

0.5 2000.0 PO2 3.6111 0.013384 1.9×10−2 1.8×10−2 2.3×10−3

0.5 2000.0 PO3 3.6182 0.013366 3.4×10−3 3.1×10−3 4.7×10−4

0.5 2000.0 PO4 3.6183 0.013366 6.6×10−4 5.8×10−4 5.4×10−5

0.5 2000.0 PO5 3.6183 0.013366 1.5×10−5 1.9×10−5 3.2×10−6

Table 2. Results of the h-p extension computation for the Newtonian fluid.

5. Inertial flow of Newtonian fluids
We have calculated the cases with curvature ratio δ = 0.001, 0.01, 0.2, 0.5.

Very satisfactory agreement between our finite element solutions and Robertson’s
perturbation solutions was observed for low Reynolds numbers with δ = 0.001, 0.01:
the agreement on the flow resistance reached within a tolerance of 10−6 while the
agreement on the stream function is within 10−4. However, the upper limit of the
Reynolds number for the perturbation solution to be valid decreases rapidly as the
curvature ratio increases. We also compared our predictions with that of Yanase et
al. (1989) who use the Fourier–Chebyshev spectral method and assume the curvature
can be neglected in the governing equations except for the centrifugal term; our
solutions for the case of δ = 0.001 agreed well with their predictions. Soh & Berger
(1987) studied the curvature effect by solving the full Navier–Stokes equation using
a finite difference method; for the case of δ = 0.01, the agreement on the flow
resistance between their predictions and ours is within 10−2. For the large curvature
ratio, δ = 0.2, the available reference data is from Soh & Berger (1987) and Austin
& Seader (1973), where the latter also used a finite difference method; comparisons
showed that our predictions agreed better with Soh & Berger’s than with Austin &
Seader’s. For the largest curvature ratio, δ = 0.5, for which there are no available
data in the literature, we list our predictions in table 1.

Generally, as the Reynolds number increases, the solution’s accuracy will deterio-
rate; this is due to the formation of boundary layers near the pipe wall. To examine
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Figure 3. The flow resistance fc/fs and secondary volume fluxes Fmax, F
∗
max versus the Reynolds

number Rn; Newtonian fluid. (a) δ = 0.001, (b) 0.01, (c) 0.2, (d) 0.5.

the accuracy of our solutions, we carried out successive h-p extension computations in
which eight layers of the elements near the wall were enriched to order-3 (PO3), then
four layers of the elements near the wall were increased to order-4 (PO4) and finally,
two layers of the elements near the wall were increased to order-5 (PO5). In table 2,
the three error indicators ERt, ERx and ERy show the excellent convergent property of
our h-p computations for the cases of δ = 0.01, 0.2, 0.5 with high Reynolds numbers.

Figure 3 shows the variations of the flow resistance and the maximum stream
functions with the Reynolds number. For all the curvature ratios considered, the flow
resistance is a monotonically increasing function of the Reynolds number. The stream
functions Fmax and F∗max, however, increase to a peak value at a certain Reynolds
number after which they decrease. As far as we are aware, this behaviour of the
stream function has not been explicitly reported in the literature and we believe
its significance is important because here Fmax represents the volumetric flux of the
secondary flow per unit work consumption and F∗max the volumetric flux of the
secondary flow per unit axial volumetric flux.

The boundary layer theory developed by Ito (1969) and Mashelkar & Devarajan
(1976) assumes that in the core region of the pipe, the centrifugal force is balanced
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Figure 4. Contours of the stream function F , the axial velocity uψ and the pressure p of Newtonian
fluid with the Dean number Dn = 5000. The contour levels are equally divided between the maximum
and minimum values. The left is the inner bend side, the right is the outer bend side. The secondary
flow is counter-clockwise in the upper half of the cross-section and clockwise in the lower half.

by the pressure gradient solely (see also the Appendix), i.e.

Rn
u2
ψ

Q
t
∂p

∂x
, (5.1)

where Q = R + cos θ. This leads to

p t p (x) , uψ t uψ(x), (5.2)

where x is the bending direction defined in figure 1. Thus in the wall region where uψ �
1, we can identify the pressure gradient as the driving force for the secondary flow.

In figure 4 we plot the streamlines of the secondary flow, the contours of the axial
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δ De fc/fs (fc/fs)R Frms ERt ERx ERy

0.001 5.0 1.000031 1.000031 3.3×10−4 4.4×10−6 4.4×10−6 1.8×10−3

0.001 10.0 1.000566 1.000571 5.1×10−3 1.1×10−5 1.1×10−5 1.7×10−3

0.001 20.0 1.008113 1.009482 7.1×10−2 7.4×10−6 7.3×10−6 1.8×10−3

0.001 30.0 1.027562 1.050200 2.6×10−1 3.9×10−6 3.6×10−6 2.3×10−3

0.01 1.0 0.999982 0.999982 4.3×10−5 7.9×10−7 7.8×10−7 1.0×10−3

0.01 4.0 1.001139 1.001161 1.2×10−2 1.3×10−5 1.2×10−5 1.7×10−3

0.01 6.0 1.006136 1.006926 5.8×10−2 9.7×10−6 8.2×10−6 1.7×10−3

0.01 10.0 1.030431 1.060485 3.0×10−1 8.4×10−6 5.3×10−6 2.4×10−3

0.2 0.2 0.998836 0.998816 9.0×10−3 5.3×10−6 1.3×10−5 2.1×10−3

0.2 0.6 0.996331 0.996288 7.5×10−3 1.6×10−6 8.6×10−6 2.0×10−3

0.2 1.0 0.993204 0.992702 1.6×10−2 1.4×10−5 5.6×10−6 1.8×10−3

0.2 2.0 1.002926 1.001539 1.6×10−1 2.3×10−5 4.2×10−5 1.8×10−3

0.2 2.5 1.018081 1.037564 3.3×10−1 4.7×10−5 4.9×10−5 2.1×10−3

0.5 0.4 0.987482 0.986468 6.3×10−2 4.1×10−5 9.7×10−5 3.6×10−3

0.5 1.0 0.968315 0.956069 7.5×10−2 2.3×10−5 1.2×10−4 2.7×10−3

0.5 2.0 1.008786 1.009700 4.8×10−1 7.9×10−5 4.2×10−4 2.4×10−3

0.5 2.2 1.022363 1.078689 6.5×10−1 1.5×10−4 4.6×10−4 2.5×10−3

Table 3. Comparison of the solutions using PO2 with the perturbation solutions of Robertson &
Muller (1996); the creeping flow of the UCM fluid. Frms is defined in (4.12).

velocity uψ and pressure. The picture qualitatively agrees with the previous literature
(see, e.g., Daskopoulos & Lenhoff 1989, Austin & Seader 1973). It can be observed
that for the fixed Dean number Dn = 5000, the curvature effect is to reduce the axial
flow and enhance the secondary flow. The region on which uψ t uψ(x) shrinks as the
curvature ratio increases, and also the approximation p t p(x) holds on the outer
part of the core region where uψ has larger values.

6. Creeping flow of UCM fluid
Through the creeping flow of UCM fluid we can examine the sole effect of the first

normal-stress difference, which is proportional to the Deborah number and to the
square of the shear rate in a simple shear flow. Table 3 demonstrates the excellent
agreement of our computation with the perturbation solution of Robertson & Muller
(1996) for UCM fluid; also through table 3 one can estimate, in terms of the Deborah
number, the range of validity of the perturbation solution.

For UCM fluid, as the Deborah number increases, stress boundary layers near the
pipe wall are formed; this deteriorates the solution’s accuracy. Similar computations
of the h-p extension to that for Newtonian fluid were carried out for UCM fluid. In
table 4, the convergent property of ERt, ERx and ERy is not as perfect as in the
Newtonian case. Table 5 lists the number of equations needed to be solved in these
calculations. Figure 5 plots the stress components Sψψ and Srψ on the pipe wall: as
the interpolation order increases, the stress profiles show good convergent properties
except near the stagnation point of the secondary flow, i.e. the outer bent point θ = 0.
It was also observed that with high Deborah numbers and low-order interpolations
the ‘Finger’ tensor B = S + I/De lost its positive definiteness at a few points on the
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δ De PO fc/fs Fmax ERt ERx ERy

0.01 15.0 PO2 1.069934 0.005774 1.2×10−4 1.1×10−4 3.7×10−3

0.01 15.0 PO3 1.069874 0.005773 1.3×10−4 1.3×10−4 2.1×10−4

0.01 15.0 PO4 1.069876 0.005773 8.4×10−5 8.4×10−5 2.6×10−5

0.01 15.0 PO5 1.069882 0.005773 6.7×10−5 6.7×10−5 2.8×10−5

0.2 4.0 PO2 1.073749 0.027088 3.2×10−4 1.4×10−4 3.0×10−3

0.2 4.0 PO3 1.073582 0.027079 1.6×10−4 2.3×10−4 1.6×10−4

0.2 4.0 PO4 1.073571 0.027078 1.2×10−4 1.3×10−4 3.8×10−6

0.2 4.0 PO5 1.073582 0.027079 8.8×10−5 8.2×10−5 3.2×10−5

Table 4. Results of the h-p extension computation for the creeping flow of the UCM fluid.

Interpolation order Number of unknowns

PO2 22896
PO3 34690
PO4 43092
PO5 48598

Table 5. Number of unknowns to be solved for the h-p extension computation.

wall near this stagnation point and this was rectified by higher-order interpolations.
The convergence of the h-p extension as a whole is satisfactory.

The analysis of the order of magnitude, given in the Appendix, concludes that
in the core region where uψ � ur, uθ the pressure gradient is balanced by the axial
normal stress solely:

0 t
∂p

∂x
+
Sψψ

Q
, (6.1)

where Q = R + cos θ. Thus the secondary flow can be attributed to the momentum
imbalance near the wall region where larger normal stress Sψψ surpasses the pressure
gradient, and the driving force turns out to be in the same direction as the Newtonian
inertial flow. Figure 6 plots the streamlines of the secondary flow, the distributions
of the axial velocity uψ and the pressure p for two relatively high Deborah numbers.
Notice that p t p(x) holds in the core region and the pressure gradient is in the
opposite direction to that of Newtonian inertial flow. Obviously, it is the relatively
large axial normal stress near the wall that promotes a secondary flow in the same
direction as the inertial secondary flow.

Figure 7 shows variations of the flow resistance and the maximum stream functions
Fmax and F∗max with the Deborah number. The behaviours of the stream functions
are similar to that for Newtonian fluid. They increase with the Deborah number to
a maximum value then monotonically decrease. The flow resistance, however, first
decreases to a minimum value then increases monotonically with the Deborah number.
This kind of drag reduction phenomenon has been predicted by the perturbation
solutions of Bowen et al. (1991) and Robertson & Muller (1996) for small curvature
ratios; in figure 7, it is not detectable in the plot for the small curvature ratios
δ = 0.001, 0.1 but is very apparent for the large curvature ratios δ = 0.2, 0.5.

For each curvature ratio δ, there is a limiting Deborah number De,max above which
our Newton iteration algorithm failed to converge. We carried out the h-p extension
calculations to exclude as much of numerical errors as possible, and it seems that
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calculations in creeping flow. (a) δ = 0.2, De = 4; (b) δ = 0.01, De = 15.

the limiting Deborah number is due to the instability of the constitutive model.
Table 6 shows that the dimensionless parameter δ1/2De can be used to characterize
the convergence breakdown problem. It is the same as the parameter proposed by
McKinley et al. (1996) for the onset of purely elastic instabilities. McKinley et al.’s
criterion can be deduced from the nonlinear terms in the upper-convected derivative
in the constitutive equations, and, we believe, it is these nonlinear terms that constitute
the major difficulty for the steady computations.

Let us express the set of discretized finite element equations for an unsteady
viscoelastic flow problem as

M
da

dt
+ R(a) = 0, (6.2)

where a is the unknown variable vector, M is the mass matrix and the nonlinear vector
R(a) represents the spatial discretization of the problem and corresponds exactly to
the equation set for the steady flow. Suppose we have a steady-state solution as which
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δ De,max δ1/2De,max

0.001 70.0 2.21
0.01 22.0 2.20
0.2 5.5 2.46
0.5 3.5 2.47

Table 6. Values of the limiting Deborah number of the UCM fluid for various curvature ratios.

satisfies

R(as) = 0, (6.3)

and define the perturbation vector as b = as − a, then we can construct a linearized
equation as

M
db

dt
+ J(as)b = 0, (6.4)

where J(as) is the Jacobi matrix evaluated at as. The evolution equation (6.4) for the
perturbation vector is the basis on which linear stability analyses are usually carried
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out. Since db/dt = −da/dt, equation (6.4) is equivalent to

J(as)b = −R(a),

which is a quasi-Newton iteration algorithm with the Jacobi matrix held constant.
Because we have not done temporal calculations and the disturbances in the process
of Deborah number augmentation are not random, we recognize that the limiting
Deborah numbers achievable under Newton iterations are not equivalent to those
obtained with (6.4), at the onset of elastic instabilities, but the subtle relation between
them is certainly worth further investigation.

7. Impact of the second normal stress difference
In the creeping flow of viscoelastic fluids, the driving force for the secondary flow in

a curved pipe is the hoop stress formed by the first normal stress difference (N1) and
the streamline curvature. It is essentially the same effect that drives flow instability
in a curved channel where the stabilizing effect of negative second normal-stress
difference (N2) was discovered in 1964 by Datta and later noted by Beris et al.
(1992), and Shaqfeh, Muller & Larson (1992), and was subsequently given a simple
physical explanation by Graham (1998) – the tension in the neutral direction resists
the deformations that lead to instability. Here we intend to examine the impact of N2

on the steady flow in curved pipes by considering non-zero µ in the equation (2.10).
In a simple shear flow with shear rate γ̇, this model predicts a constant viscosity,
ηs + ηp, and the first and second normal-stress differences as

N1 = 2ηpDeγ̇
2, N2 = −µηpDeγ̇2. (7.1)

The ratio of the second to first normal-stress difference is N2/N1 = −µ/2; from
experimental evidence (e.g. Tanner 2000), N2/N1 = −0.1 is a typical value for polymer
melts or solutions. Furthermore, let us choose ηs = 0 and name this model UCMN2,
and consider the small curvature ratio δ = 0.01 and the large curvature ratio δ = 0.2.

Figure 8 compares the predictions of the UCM and UCMN2 models for flow
resistances fc/fs and secondary volumetric fluxes Fmax. The negative second normal-
stress difference has dramatically attenuated the secondary flows. In the case of
δ = 0.01, the secondary flow has almost disappeared above De = 10 and the drag
behaves like that in a Poiseuille flow in a straight pipe. It was observed that very
small µ makes the computation unstable while for the typical value µ = 0.2 the
computation is more stable; for example, in the case of δ = 0.2, the limiting Deborah
number for the UCM model is 5.5 while those for the UCMN2 model with µ = 0.1
and µ = 0.2 are 3.0 and 9.0, respectively. This phenomenon parallels the discovery of
Graham (1998) about the effect on the elastic instabilities of adding axial flows to a
circular Couette flow.

Figure 9 plots the contours of the axial velocity uψ , the pressure p, and the normal
stresses Sθθ and Sψψ of two typical cases. For the small curvature ratio δ = 0.01 and
De = 20, these contours approximate that of Poiseuille flow in a straight pipe for
which it is easy to prove that

Sθθ =
µ

2
Sψψ and

∂p

∂r
= −Sθθ

r
. (7.2)

Actually, Srr is two orders of magnitude less than Sθθ in the computations, thus
the stresses Sψψ and Sθθ in the left-hand column of figure 9 represent the first and
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Figure 8. The flow resistance fc/fs and secondary volumetric flux Fmax versus the Deborah
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second normal-stress differences, respectively. For the large curvature ratio δ = 0.2
and De = 8, the normal stresses Sθθ and Sψψ form boundary layer structures on the
outer bend of the wall.

8. Inertial flow of viscoelastic fluids
We first consider the inertial flow of Oldroyd-B fluids by setting µ = 0 in the

constitutive equation (2.10). In a simple shear flow with shear rate γ̇, the Oldroyd-B
model predicts the constant viscosity ηs + ηp and the first normal-stress difference
N1 given by equation (7.1) (N2 = 0). To make the study reasonably focused we fix
the relative solvent viscosity at ηs = 0.5. For inertial viscoelastic flows, an elasticity
number, En, can be defined to characterize the elastic level with respect to the inertia:

En =
Deηp

Rn
=
λη∗p
ρa2

. (8.1)
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Figure 9. Contours of the axial velocity uψ , the pressure p and the normal stresses Sθθ, Sψψ for the
Oldroyd-3-constant fluid with ηs = 0 and µ = 0.2 (UCMN2 model).
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δ Rn De fc/fs (fc/fs)R Frms ERt ERx ERy

0.01 20.0 0.4 1.000193 1.000194 3.3×10−4 3.1×10−7 2.6×10−7 6.2×10−6

0.01 80.0 1.6 1.022411 1.028247 4.9×10−2 4.3×10−5 4.2×10−5 3.4×10−5

0.01 100.0 2.0 1.043758 1.070371 1.0×10−1 1.0×10−4 9.9×10−5 7.9×10−5

0.01 20.0 2.0 1.000490 1.000490 1.5×10−3 1.2×10−5 1.2×10−5 1.6×10−3

0.01 40.0 4.0 1.007013 1.007369 2.5×10−2 8.2×10−5 8.1×10−5 1.8×10−3

0.01 60.0 6.0 1.027684 1.037906 1.1×10−1 3.2×10−4 3.2×10−4 2.7×10−3

0.2 5.0 0.1 1.001697 1.001685 4.4×10−3 1.9× 10−5 3.0×10−5 7.1×10−5

0.2 10.0 0.2 1.010651 1.011257 1.7×10−2 1.9× 10−5 3.2×10−5 6.9×10−5

0.2 20.0 0.4 1.055809 1.083957 1.0×10−1 1.7× 10−5 3.4×10−6 1.1×10−4

0.2 10.0 1.0 1.015936 1.015167 3.3×10−2 2.2× 10−5 2.1×10−6 1.9×10−3

0.2 15.0 1.5 1.051602 1.070664 1.4×10−1 2.4× 10−4 1.9×10−4 2.5×10−3

0.2 20.0 2.0 1.094931 1.243765 3.4×10−1 7.4× 10−4 6.4×10−4 4.4×10−3

Table 7. Comparison of the solutions using PO2 with the perturbation solutions of Robertson &
Muller (1996); the inertial flow of the Oldroyd-B fluid.

Note that for a given geometry, the elasticity number is only a function of the fluid
properties. Due to the difficulty of reaching high Deborah numbers, we only present
the results for the small elasticity numbers, En = 0.05, 0.01.

Table 7 shows that our results for the flow resistance and the stream function agree
well with the perturbation solutions of Robertson & Muller (1996) at relatively small
Reynolds/Deborah numbers. Figure 10 exhibits the dependence of the flow resistance
fc/fs and the secondary volumetric flux Fmax on the Reynolds number. The qualitative
behaviour of fc/fs and Fmax for Oldroyd-B fluid is the same as that for Newtonian
fluid. From En = 0 to En = 0.05, the influence of the viscoelasticity is to increase the
flow resistance and, first enhance the secondary volumetric flux, then after the peak
value, reduce it considerably; the behaviour of F∗max which is not presented here is
similar to that of Fmax. According to the analysis in the Appendix, in the core region
the approximate momentum balance is

Rn
u2
ψ

Q
t
∂p

∂x
+
Sψψ

Q
. (8.2)

Note that when approaching to the wall, both the larger Sψψ and smaller u2
ψ are

positive influences to strengthen the secondary flow.
Figure 11 plots contours of the pressure and axial velocity uψ for the case of

δ = 0.2. It can be seen that for the relatively large elasticity number (Rn = 50 and
De = 5) the distributions of the pressure p and uψ show an obvious competing effect
of fluid inertia and elasticity (see figures 4, 6), while for the small elasticity number
(Rn = 200 and De = 4) the corresponding distributions are dominated by the fluid
inertia.

We checked the maximum Reynolds number for which our Newton iteration algo-
rithm can converge, and found that the limiting Deborah numbers are approximately
the same as that for the creeping flow of the UCM fluid. As shown in table 8, the
dimensionless parameter δ1/2De can also be used to characterize the convergence
breakdown problem here.

Let us examine the influence of the second normal stress difference on the inertial
viscoelastic flow by choosing a typical value µ = 0.2 in the constitutive equation (2.10).
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Figure 10. The flow resistance fc/fs and secondary volumetric flux Fmax versus the Reynolds
number Rn; the elasticity number En = 0 is Newtonian fluid, En = 0.01 and 0.05 are Oldroyd-B
fluids with ηs = 0.5.

Figure 12 shows the predicted flow resistances fc/fs and the secondary volumetric
fluxes Fmax versus the Reynolds number Rn. As in the case of creeping flow, the second
normal-stress difference has dramatically attenuated the secondary flows. In the case
of δ = 0.01 and En = 0.05, the secondary flow has almost disappeared for Rn > 100.
The effect on the flow resistance is different for large and small curvature ratios:
in the case of δ = 0.2, the flow resistance increases monotonically with increasing
elasticity number and is greater than the Newtonian value, while in the case of
δ = 0.01, for Rn > 50, the flow resistance decreases with increasing the elasticity
number and seems to approach an asymptotic value which is considerably lower
than the Newtonian value. This drag reduction is consistent with the experimental
observations for dilute polymer solutions with small curvature ratios at low Reynolds
numbers (Jones & Davies 1976; Mashelkar & Devarajan 1976). However, the present
model seems to lack a mechanism that produces the subsequent considerable drag
increases when the Reynolds number further increases, as observed in the experiments.
This may be attributed to some shortcomings of the model, especially the quadratic
dependence of the normal stress differences on the shear rate, whereas, for example,



Flows in curved pipes 351

p

–0.5

1.4

3.4

5.3

7.2

p

–3.4

2.4

8.1

13.9

19.6

Rn=50, De=5

Rn=200, De=4

uψ

uψ

Figure 11. Contours of the pressure p and the axial velocity uψ; the inertial flow of Oldroyd-B fluid
with ηs = 0.5 and δ = 0.2; the contour levels are equally divided between the maximum and the
minimum.

δ En Rn,max De,max δ1/2De,max

0.01 0.01 1200 24.0 2.4
0.01 0.05 260 26.0 2.6
0.2 0.01 280 5.6 2.50
0.2 0.05 60 6.0 2.68

Table 8. Values of the limiting Reynolds/Deborah numbers of the Oldroyd-B fluid.

in the experiments of Mashelkar & Devarajan (1976) for dilute polymer solutions,
this dependence is approximately linear.

It was observed that the negative second normal-stress difference makes the com-
putation more stable: for example, the upper limit of the Reynolds number for
Oldroyd-B fluid with δ = 0.2 and En = 0.05 is 60, while for the Oldroyd-3-constant
model with δ = 0.2, En = 0.05 and µ = 0.2 the limit exceeds 200.
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Figure 12. The flow resistance fc/fs and secondary volumetric flux Fmax versus the Reynolds
number Rn for Oldroyd-3-constant fluids with ηs = 0.5 and µ = 0.2.

9. Conclusion
From the global torque- and force-balance analysis, we have proposed three criteria

to check numerical solutions for the fully developed flow in curved pipes. These criteria
have been used to estimate the errors in the h-p finite element computations for the
Newtonian and viscoelastic fluids in this study. We recommend them as the error
estimations for any future numerical investigations on this problem.

Our computations of the flow resistance and secondary stream function are in close
agreement with the perturbation solutions of Robertson & Muller (1996) in the cases
of small Reynolds/Deborah numbers. On the other hand, the numerical solutions can
be used to estimate the range of validity of the perturbation solutions. Through the
h-p extension computations and the error estimations, more accurate solutions than
those in the previous literature are assured, especially for the large curvature ratios.

Based on our numerical solutions and analysis of the order of magnitude in the
governing equations, the mechanism of the secondary flow for fluids with zero second
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normal-stress difference can be summarized as follows. For Newtonian flow, the
pressure gradient, established essentially by the centrifugal force in the core region,
becomes the driving force of the secondary flow near the wall region. For creeping
viscoelastic flow, the pressure gradient is essentially balanced by the axial normal
stress in the core region; however, near the wall it cannot compete with the large
axial normal stress there, which is why viscoelasticity promotes a secondary flow in
the same direction as the inertial secondary flow, despite the adverse pressure gradient
in the wall region. In the case of inertial viscoelastic flow, when approaching the wall,
both the larger axial normal stress and the smaller inertia are positive contributions
to increasing the secondary flow.

The maximum stream functions Fmax and F∗max have been used to quantify the
intensity of the secondary flow; they represent the secondary volumetric flux per unit
work consumption and per unit axial volumetric flux, respectively. The qualitative
behaviours of these two fluxes are the same for both Newtonian and viscoelastic
fluids: they first increase with the Reynolds/Deborah numbers, then decrease. This
phenomenon has not been reported in the literature and we expect it to be confirmed
by future experiments. Obviously, it should be of interest in engineering applications,
because the secondary flow is closely related to the heat/mass transfer character of
the flow in curved pipes.

The impact of the second normal-stress difference on the flow in curved pipes
has been examined: a small negative second normal-stress difference can drastically
suppress the secondary flow and in the case of small curvature ratios, makes the
flow approximate the corresponding Poiseuille flow in a straight pipe. For the UCM
or Oldroyd-B models, the first normal-stress difference in the axial flow promotes a
secondary flow which gives rise to a tensile stress in the neutral direction; however, the
effect of this tensile stress is equivalent to a negative second normal-stress difference,
i.e. to suppress the secondary flow. The competition between these two factors may be
responsible for the observed increase/decrease behaviour of the viscoelastic secondary
flows.

Our work on the steady solutions may provide the base solutions required for
elastic instability investigations. Furthermore, the limiting Deborah numbers met for
the UCM and Oldroyd-B models were observed to obey the same scaling criterion as
proposed by McKinley et al. (1996) for elastic instabilities; we present the intriguing
problem of the subtle relation between Newton iteration for steady solutions and
linear stability analyses.

The drag reduction in creeping flow of UCM fluid with large curvature ratios
predicted by our computation is rather interesting: the drag of a viscoelastic flow in
a curved pipe can be considerably lower than that in the corresponding straight pipe.
For the inertial flow of Oldroyd-B fluid, our computation predicts drag enhancement
due to the viscoelasticity. The situation, however, becomes more complicated when
a non-zero second normal-stress difference is considered. The Oldroyd-3-constant
model predicts that for small curvature ratios, a typical negative second normal-
stress differences makes the flow approximate the corresponding Poiseuille flow in
a straight pipe, and, consequently, produces large drag reductions compared to
Newtonian flow; however, for large curvature ratios, although the secondary flow
is also greatly attenuated by the second normal-stress difference, the flow resistance
remains considerably higher than for Newtonian flow. The present Oldroyd-3-constant
model is still too simple to quantitatively predict the drag behaviour of dilute polymer
solutions in the whole range of Reynolds number observed in the experiments (Jones
& Davies 1976; Mashelkar & Devarajan 1976). Generally, the first and second normal-
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stress differences predicted by the Oldroyd model do not fit the experiments for most
polymer solutions; therefore further work on more realistic, carefully calibrated
viscoelastic models is needed.

We gratefully acknowledge the support from the Australian Research Council
(ARC). Y. R. Fan also acknowledges the support of the National Natural Science
Foundation of China. The computations were done on the Sydney Distributed Com-
puting (SyDCom) Laboratory.

Appendix. Analysis of the order of magnitude for the Oldroyd-B fluid
Owing to the fully developed flow assumption, in the following equations, the terms

containing ∂/∂ψ have been dropped and we employ the symbolic expressions:

Q = R + r cos θ, (A 1)

(u · ∇) = ur
∂

∂r
+ uθ

∂

r∂θ
. (A 2)

The components of the strain rate tensor, D = ∇u+ (∇u)T , are

Drr = 2
∂ur

∂r
; Dθθ = 2

(
∂uθ

r∂θ
+
ur

r

)
; Drθ =

(
∂uθ

∂r
+
∂ur

r∂θ
− uθ

r

)
;

Drψ =

(
∂uψ

∂r
− uψ cos θ

Q

)
; Dθψ =

(
∂uψ

r∂θ
+
uψ sin θ

Q

)
;

Dψψ = 2
ur cos θ − uθ sin θ

Q
.


(A 3)

The continuity equation is

∂ur

∂r
+
∂uθ

r∂θ
+
ur

r
+
ur cos θ − uθ sin θ

Q
= 0. (A 4)

The component forms of the momentum equation are

Rn

(
(u · ∇)ur − u2

θ

r
− u2

ψ cos θ

Q

)
= −∂p

∂r
+
∂τrr

∂r
+
∂τrθ

r∂θ
+
τrr − τθθ

r

+
τrr cos θ − τrθ sin θ − τψψ cos θ

Q
, (A 5)

Rn

(
(u · ∇)uθ +

uθur

r
+
u2
ψ sin θ

Q

)
= − ∂p

r∂θ
+
∂τrθ

∂r
+
∂τθθ

r∂θ

+
2τrθ
r

+
τrθ cos θ − τθθ sin θ + τψψ sin θ

Q
, (A 6)

Rn

(
(u · ∇)uψ +

uψ(ur cos θ − uθ sin θ)

Q

)
=
−C
Q

+
∂τrψ

∂r
+
∂τθψ

r∂θ

+
τrψ

r
+

2(τrψ cos θ − τθψ sin θ)

Q
, (A 7)
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where τ is the extra tensor, which can be split as

τ = ηsD + S . (A 8)

For the Oldroyd-B model, S obeys the upper-convected Maxwell (UCM) constitutive
equation, for which the component forms are

Srr + De

(
(u · ∇)Srr − SrrDrr − 2Srθ

∂ur

r∂θ

)
= ηpDrr, (A 9)

Sθθ + De

(
(u · ∇)Sθθ − SθθDθθ − 2Srθ

(
∂uθ

∂r
− uθ

r

))
= ηpDθθ, (A 10)

Srθ + De

(
(u · ∇)Srθ + SrθDψψ/2− Srr

(
∂uθ

∂r
− uθ

r

)
− Sθθ ∂ur

r∂θ

)
= ηpDrθ, (A 11)

Srψ + De

(
(u · ∇)Srψ + SrψDθθ/2− SrrDrψ − SrθDθψ − Sθψ ∂ur

r∂θ

)
= ηpDrψ, (A 12)

Sθψ + De

(
(u · ∇)Sθψ + SθψDrr/2− SθθDθψ − SrθDrψ − Srψ

(
∂uθ

∂r
− uθ

r

))
= ηpDθψ,

(A 13)

Sψψ + De
(
(u · ∇)Sψψ − SψψDψψ − 2SrψDrψ − 2SθψDθψ

)
= ηpDψψ. (A 14)

The secondary flow is rather weak in comparison to the axial flow: generally, the
velocity components ur, uθ are two-orders of magnitude smaller than the component
uψ . The following order of magnitude approximations will be made:

ur, uθ s O(ε)� 1, uψ s O(1). (A 15)

If we consider the region far from the wall we can assume that

∂

∂r
,
∂

∂θ
s O(1). (A 16)

Thus from (A 3) it follows that

Drr, Dθθ, Drθ, Dψψ s O(ε), Drψ, Dθψ s O(1). (A 17)

Notice that (A 9), (A 10) and (A 11) are self-contained in the sense that they contain
no axial components of the velocity and stress; it is thus not difficult to show that

Srr, Sθθ, Srθ s O(ε). (A 18)

From (A 12) and (A 13), the leading order of Srψ and Sθψ can be expressed as

Srψ ≈ ηp
(
∂uψ

∂r
− uψ cos θ

Q

)
+ O(ε), Sθψ ≈ ηp

(
∂uψ

r∂θ
+
uψ sin θ

Q

)
+ O(ε), (A 19)

then from (A 14), Sψψ is estimated as

Sψψ ≈ 2Deηp

[(
∂uψ

∂r
− uψ cos θ

Q

)2

+

(
∂uψ

r∂θ
+
uψ sin θ

Q

)2
]

+ O(ε). (A 20)

Combining relations (A 15) to (A 20), the momentum balance in the r- and θ-directions
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can be reduced to

−Rn u
2
ψ cos θ

Q
≈ −∂p

∂r
− Sψψ cos θ

Q
(A 21)

and

Rn
u2
ψ sin θ

Q
≈ − ∂p

r∂θ
+
Sψψ sin θ

Q
, (A 22)

which gives rise to the balance in the x-direction specified in figure 1 as

Rn
u2
ψ

Q
≈ ∂p

∂x
+
Sψψ

Q
. (A 23)

Notice that we do not invoke the small curvature ratio assumption in the present
analysis and the key consequence is that, in the core region (ur, uθ � uψ), the
fluid inertia and the axial normal stress are two competitive forces in establishing
the pressure gradient or, in other words, the cross-sectional momentum balance is
roughly achieved by these three factors.
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